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Abstract--For so-called dispersed two-phase flow systems the equations of motion are derived for each 
phase separately. The equations are developed using a minimum of mathematics by applying mass and 
momentum balances respectively over a small cubic volume element. Special attention is paid to those 
particles which are cut by the boundaries of this control volume element. In fact these particles are treated 
by means of two methods, both methods giving the same final result. 

1. INTRODUCTION 

Two-phase flow systems can roughly be divided in: (a) segregated two-phase flow systems, in 
which wall effects play a dominating role and in which one phase is mainly segregated and as 
such flowing along the walls; (b) dispersed two-phase flow systems, in which wall effects are 
only of minor importance and in which one phase--the dispersed phase--is present as small 
particles, drops or bubbles anywhere in the other phase--the continuous phase. 

This paper will deal only with dispersed two-phase flow systems of which the scale of 
dispersion is at least two orders of magnitude (102x) smaller than the scale of the apparatus, 
equipment or natural surroundings in which it is present or through which it moves. 

A derivation of the momentum equations for each phase separately will be given for the 
case that no thermodynamic or chemical processes occur. Further restrictions are that neither 
inversion of the dispersion occurs nor coalescing or continued dispergating of the dispersed 
phase while the phase ratio should be a continuous function in space and time. 

If coalescing and redispersion are excluded so that each particle maintains its identity then a 
specific velocity can be attributed to each particle which is the velocity of its mass centre. Of 
course, inside the particle velocity differences may occur (e.g. the particle might rotate around 
its mass centre if it is a solid or an internal vortex ring might occur if the particle is fluid). It is 
believed, however, that these velocity differences only affect the constitutive equations, notably 
that equation which relates the so-called slip force to the slip velocity. Hence, in this paper the 
velocity differences inside the dispersed particles will be ignored (see also discussion). 

Earlier derivations of the momentum equations have been given by, e.g. Van Deemter & 
Van der Laan (1961), Hinze (1962), Jackson (1963), Anderson & Jackson (1967), Drew & Segel 
(1971) and Ishii (1975). There is, however, still disagreement about the correct shape of these 
equations. 

2. PRESSURE AND SHEAR STRESS INSIDE THE 
DISPERSED PARTICLES 

In a continuous phase shear stress and fluid pressure will be continuous in space and time. 
When we pass the interface between the two phases, however, this might not be true. When 
both phases are fluid the interracial tension 3, can generally not be ignored and it is this tension 
which causes each separate particle to keep its identity. It also causes pressure pa inside the 
particle to differ from the continuous phase pressure p. For a spherical particle it holds that 
p - pa = 2"y/a in which a is the radius of the particle. It is obvious that in a cross-section of the 
system normal to the direction of flow the pressure Pd can have different values in the 
individual particles, depending on their sizes. Hence, it is concluded that pa has no relation at 
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all to the flow of the dispersed system and therefore is irrelevant for the description of the flow 

equations. 
In a similar way it can be reasoned that the shear stress ~ inside the particle is not related 

directly to the motion of the dispersed particles. Hence r_.a is not to be confused with the stress 

tensor ~.a which arises from interaction and exchange of momentum between separate 

individual particles either by direct permanent contact between these particles or by collisions. 

attraction or repulsion if there is no permanent contact or no contact at all.t 

3. AVERAGING OF VARIABLES 

In a dispersed two-phase system momentary point variables like velocity, pressure, etc. vary 

due to macroscopic variations which determine the overall macroscopic behaviour of the 
dispersion at the scale of the macroscopic equipment which contains the dispersion. 

On top of these macroscopic variations the variables also fluctuate in time and in space due 
to microscopic variations at the scale of the dispersed particles themselves. These variations 
arise from the complicated paths of individual particles and from the distortion of fluid 
streamlines around and between the particles (microturbulence). 

In deriving manageable mass and momentum balances, therefore, an averaging procedure 
should be introduced in such a way that any momentary point property a' can be conceived as 
the superposition of its local mean value a and a fluctuation a" which varies in time and in 
space. This means that the average of a" should be zero: (1) when--at a certain moment-- 
averaged over the control volume V, o or over the control surface element Aro; (2) when--at a 
certain location--averaged over a sufficiently long time At. 

The size r0 of this control volume or surface element should be large compared to the scale 
ld of the dispersion but small compared to the size L of the macroscopic equipment (In ~. ro 
L). In the same way the integration time At should be long compared to the passage time ta of a 
single particle (ta = laird) and short compared to the relaxation time T of the macroscopic 
variations (ta ~ At ~. T). 

That indeed a" when averaged over the control surface A, o becomes zero and becomes zero 
as well when averaged over At follows from the consideration that in a stationary flow field the 
spectrum distribution of the fluctuations over the surface A, o must be the same as the spectrum 
distribution over the time At. 

The above means that when, e.g. the product pav~v'~, is averaged over A, o we obtain 
tr , it exactly the same value as when averaged over At. It will be denoted as PdV,uVdr 

Hence the so-called Reynolds stresses due to microscopic turbulence can be obtained from 
surface averaging as well as from time averaging. 

Hence also when surface averaging has been carried out time averaging of the surface 
average variables becomes meaningless. 

Of course all this does not hold for macroscopic turbulence which in this paper is left out of 
consideration. 

3.1 The averaging procedure o[ Anderson & Jackson 
Anderson & Jackson (1967) applied an averaging procedure in which local mean variables at 

point _r are derived by means of integration of these variables over a weighting function g(l) 
where I = [_r - r d. 

This weighting function should further satisfy the requirements that it is: (a) analytical and 
> 0 for all 1; (b) monotonically decreasing with increasing I; (c) normalised: 4~r f~ g(l)l 2 dl = 1; 
and finally (d) that it has a radius ro defined by 4w ff3 ° g(l)l 2 dl = ~ where la ~ ro '~ L. 

This indeed seems a very elegant method especially since it avoids the problem how to deal 

*q~ also differs in character from ~c since it contains the isotropic interparticle pressure (equivalent to the continuous 
phase pressure p). This isotropic interpanicle pressure will not be nominated here. 
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with particles which are cut by the boundaries of a reference volume over which the mass and 
momentum balances are taken. On the other hand, in the elaboration of the above integrals 
assumptions have to be made on the variation of the variables which are not always justified or 
even seem to be contradictory (as explained in appendix I). 

3.2 Integration over a cubic volume element 

We propose to apply the well-known method of balancing over a cubic volume element 
where the separate contributions to these balances now have to be calculated by integration 
over the volume and the faces of this volume element respectively. 

Again the size of this volume element should be large compared to the scale of the 
dispersion and small compared to the size of the apparatus. 

In this method therefore fluxes are averaged (with a weighting function g = 1) over the 
boundary planes of the volume element, e.g. 

1 I~ v~x~, y, z) dy dz v~(x,, y, z) = ~ ,~ ,  Ill 

while concentrations are averaged (again with a weighting function g = 1) over the volume of 
the element, e.g. for the momentum concentration: 

1 
(pv,) = A x A - ~  la~.a,~, (p'v~ dxdy dz. [2] 

Indeed the requirement that the size of the volume element should be large compared to the 
scale of the dispersion forbids us to take the limit as Ax, Ay and Az approach to zero. If, 
however, the size of the volume element is indeed small compared to the size of the apparatus 
it is reasonable to assume that within the volume element all variables change linearly so that, 
e.g. 

/av*  Ax. 
v~(xl + Ax) = vdx3 + \ Ox /~, 

With this assumption the balances can be easily elaborated. 

3.3 Application to dispersed two-phase systems 
For a dispersed two-phase system the above indicated method must be elaborated taking 

into account that each phase is not present everywhere. First of all a mathematical formulation 
must be given of the volume fraction of continuous phase, generally named the porosity ¢. The 
volume fraction of dispersed phase then is (1 - e). 

This porosity of course can only be defined at a scale large compared to the scale of 
dispersion since at the scale of dispersion the volume fraction of each phase is either one or 
zero. This also means that it does not make sense to distinguish between point values of the 
porosity (c') and local mean values (c) as is proposed for all other variables. 

A satisfactory definition of the porosity runs: 

1 f dx dy dz [3] e = AxAyAz 
~xA yAz 

¢ont.r~la$c 

where the integration is extended over all points which are occupied by the continuous phase. 
In averaging fluxes over phases this definition is not adequate. To this end we now suppose 

that the control volume element is split up into a large number of thin slabs parallel to the plane 
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x = x~ where the thickness of these slabs is small compared to the size of the dispersed 
particles. 

The intersection of these slabs by the dispersed particles then can be conceived as being 
constant (independent of x, see figure l) over this thickness. It follows that e does not change if 

we put: 

I f , { l f  } 1 f d y d z  [4] E = ~ x  x AyAz dydz  d X -A y A z  
Ay,Az Ay.A: 

cont.phase cont.phase 

Of course similar expressions can be derived for slabs in the remaining directions. These 
expressions will be used in elaborating fluxes. 

. \  

Figure I. 

In accordance with the foregoing definition a flux a'c of the continuous phase through the 
plane AyAz at x = x~ now will be averaged as follows: 

~aAxl, y,, z,) = ~ AyAz  _ a,(xl; y, z) dy dz [5] 
Ay, Az 

conl.phasc 

and similarly a flux a~ of the dispersed phase as 

I [ a'(xl, y, z) dy dz. [6] (1 - ~)aa(xt, Y~, zL) - A yAz 
Ay.Az 

disp.phase 

If • = 1 (no disp. phase present) or • = 0 (no cont. phase present) these definitions give the 
desired result. In case a'c (resp. a~) is constant over the control volume, integration over Ax 
immediately gives the original definition of the porosity •. 

A concentration in the continuous phase or a body force I acting upon this phase will be 
averaged according to: 

1 f I' dx dy dz [7] el - AxAyA~ 
A X.A y,,', Z 

cont.phase 

which again agrees with the original definition of the porosity. 
Finally we must decide what to do with those particles which are cut by the boundaries of the 

control volume element. These particles will belong to this volume element only partly and, 
therefore, summing up all momentum flows and all forces acting upon this element we are dealing 
with p~ and r_.a which, as mentioned before, have no direct relation with the motion of the dispersed 
phase. This difficulty seems too serious to be ignored, as was done by Van Deemter & Van der Laan 
(1961). 

Two methods seem to be appropriate to handle this difficulty. Since both methods should 
finally result into the same equations we thus obtain a check on these equations. 
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When we consider all particles which are cut by the faces of the control volume element we 
can distinguish two groups: a group NI whose mass centre is lying within the control volume 
element or in its faces, and a group N2 whose mass centre is lying outside the control volume 
element (see figure 2). On an average N2 is somewhat larger than N,, their ratio N,/N2 
approaching (1 - 2d/r0) in which d is the average diameter of the dispersed particles and re the 
length of the edges of the control volume element. Ultimately it will appear that this difference 
between N2 and NI has no effect on our derivations. 

Now in method I the boundary planes of the volume element are conceived to be flexible 
and to run through the continuous phase around the particles NI and N2 in such a way that the 
particles NI are entirely inside the control volume element and the particles N2 entirely outside 
this volume element. In this way the average location of the boundary planes remains the same 
while also the volume of both phases inside the volume element is not affected. External forces 
(except body forces) are all acting on the continuous phase. It will be clear, however, that this 
method can be applied only if the volume concentration of the dispersed phase is low and that it 
certainly can not be applied if there is permanent contact between the dispersed particles. 

In method II it is supposed that the control volume element again contains the particles No 
and Ni but not the particles N2. The boundary planes are following the exact mathematical 
planes (x = constant, y = constant or z = constan0 as long as they run through the continuous 
phase (see figure 2, the fat line), but follow the 'external' surface (S,) of the particles N~ and the 
'internal' surface ($3 of the particles N2 (see section 4.3). This method implies that forces working 
on particles which are intersected by the flat boundary planes now partly belong to external forces 
and partly to internal forces. 

How both methods will proceed will be seen in the next three sections. 
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We will confine ourselves to the case that the densities of both participating phases may be 
considered constant while phase transitions may be ignored. 

We choose the following notation: 

Continuous Dispersed 
phase phase 

volume f ract ion 1 - 
Pc dens i ty  pa 
~ (  local  mean  veloci ty  _~d 
.no = (p(v_'c mass  f l u x  n_a = (1 - ~)pdo_d 

4. THE MOMENTUM BALANCES 

Most generally the law of conservation of momentum for each phase runs: 

I 
rate of accumulation-] [-rate in of momentum-] [-rate out of momentum- 

of momentum of [ = [  for that phase by | - [  for that phase by 
phase considered _] L_ convection _J ~_ convection 

I sum of external ] [- sum of internal ] 
+ forces acting upon[+|forces  acting upon[ 

that phase _J L_ that phase ]" 

It must be recognized that the internal forces also include the interaction force _Fd, which the 
dispersed phase exerts on the continuous phase (per unit volume of dispersed system) or 
similarly the force -_Fdc which is exerted upon the dispersed phase. 

4.1 The momentum balance of the continuous phase (method I) 
The evaluation of the net rate of momentum by convection becomes: 

I rate in by convection 1 
of momentum in = 

x-direction f ' '  p¢v~v¢~ dy dz + 
Ay,Az Ax.Az 

cont.plulse cont.phase 
at X~X I at y ~  Yl 

t pcvc~vy dx dz 

f 
Ax,Ay 

cont.pha~ 
at Z ' Z  I 

pcv'~v'~z dx dy [8] 

I rate out by convection] 
of momentum in / = 

x-direction .J f 
Ay,~z 

cont.phase 
at X~xI+AX 

cont.pha~e 
at Z~ZI+AZ 

Pcv'c~V'cx dy dz + f 
~,x,Az 

¢ont.phaue 
at y m y l + A y  

pd.v'~ dx dz 

p~v'~v'~ dx dy. [9] 

Whether we apply method I or II for the faces of the volume element has as yet not made any 
difference with respect to the convective transport through these faces. Further elaborating the 
two above contributions gives us the net convection contribution. Also here the products of two 
fluctuations generally do not average out but contribute to the total momentum transport in a 
way comparable to the Reynolds stresses in turbulent transport. Hence a term V • ~ enters the 
momentum equation of the continuous phase where we have introduced .Pc . . . . .  - epcU_cUc. 
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Now the net convection contributions in the x-direction runs as: 

- & I-~x (eVcxVcx) +-~y (,Vc~Vc,) +-~ (,vcxvcz)} hxAYAZ 

fa  . . . . . .  ~ , , , , ,  a -pc ~,Tx t~v.v.J+__ (~v.v~,)+Tz (~V;:"z)}t~xayaz 

= -{p j r .  (~_v~vc)l, + [v.R__cl~}axayaz. [1o1 
The first external forces to be evaluated are those exerted by the shear stress ~, Now it is 

important that we deal with method I since the faces through which the shear occurs now are 
entirely in the continuous phase and hence in averaging over these faces the porosity does not come 
in: 

I ra te  in by shear 7 
of momentum in |  = f ¢c~dydz+ f¢.:.dxdz+ f ¢.zdxdy [11] 

x-direction ] a~z ax.az, ax.ay. 
at x t at Yl at z I 

irate out by shear-] 
of momentum in|= f ,:=dydz+ f ,%dxdz+ f ,:~,dxdy [12] 

x-direction ] a~z ~.a= a~.ay. 
at x l+Ax a! yl+Ay at ZI+AZ 

so that the net external force by shear in the x-direction becomes: 

a a 
- {-~x (%,~) + ~y(t~,.) + -~z( %~) } AxA y Az = - [V . ~ ]~AxA yAz. [13] 

The other external forces acting upon the continuous phase contained in the control volume 
element include the action of the pressure p and the body force due to gravity. 

The external forces exerted in the x-direction by the pressure are acting only upon the faces Ay, 
Az. Applying method I these forces entirely act upon the continuous phase and again the porosity 
does not come in. Their combined contribution is 

- [VpLAxAyAz. 

The body.force is found directly by integration of the gravity acceleration over all the mass of 
the continuous phase contained in the control volume element, and hence 

= ~ p~g_ dx dy dz = epcghAyhz 
Ax,Ay,Az 

cont.phase 

The component of this force in the x-direction runs as ~pcgxAxAyAz. 
Finally we must evaluate the internal/orce exerted by the dispersed phase upon the continuous 

phase, the so-called interaction force Fac. It is found by summation of all forces which the 
individual particles contained in the control volume exert upon the continuous phase. Hence 

in which: 

In the latter integral 
particle. 

- r 0  all partmles 

_F~:= f n.(p'a+ ¢.9dS= f (Vp'+V. r~)dVp. 
Sp Vp 

[14]t 

T' inside the particle is the imaginary continuation of ¢' outside the m c iic 

?Since F~c is the interaction force of one single particle it is a point variable and therefore is given a single prime. After 
summation over all particles in the control volume this prime disappears in the mean interaction force Fa¢. 
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The total interaction force of all particles contained in the control volume element upon the 
continuous phase, therefore, is 

AxAyAz-Fac= p~i F-'o~: X f (Vp'+V'r__'~)dV~ 
all cles all part icles 

where we have introduced: 

f I ~ - -  

f 
= J (Vp'+ V. r'c) dx dy dz 

Ax,av Az, 
disp.phase 

= AxAyAz{(1 - e)(Vp + V. T~) + _iF,} [15] 

, f AxAyAz (7p" + Y. r~) dx dy dz. [16] 
Ax,Ay,Az. 
disp.phase 

This force _F~ can not be further elaborated (see Discussion). In the x-direction we have of 
course 

Fdc.~ = (1 -- ~)[Vp + V" T~]x + F,x. [17] 

The rate of accumulation is easily found: 

i ra te  or accumulat ion]  0 0 
of momentum in i = - -  JJ" pcV'cx dxdydz=Pc-~(evcx)AxAyAz. [18] 

x-direction _] at ax,ay.az 
cont .phas¢  

Now equating according to the law of conservation of momentum we find after dividing by 
AxAyAz: 

a 
Pc -~ (~Vcx) = - o~[V" (~_vc_v~)]x - [V. Rc]~ - [V. ~]x - [Vp]x + Ep~gx + (1 - ~)[Vp + V. ~]x + F,x 

= - o~[V" (~_vc_vc)]x - IV. Rc]~ - ¢[V. ~:]~ - ~[Vp]~ + ~pcg~ + F,~. [19] 

Similar expressions are found for momentum in the y-direction and that in the z-direction. 
Therefore we can formulate the general vector equation: 

[0~ (,_~c) + v .  (,_o,~01 = - , v .  ~ - v .  R c - , V p  + , p e g  + F,. I20J pc 

The I.h.s. can be further worked out by means of the continuity equation which finally gives: 

D ( < ~ c + _  
x 

- ) Epc-~(vc)=~p~ \ o t vc'Vvc = - ~ V ' ~ - V ' R c - ~ V p + ~ p ~ g +  F I. [21] 

4.2 The momentum balance of the dispersed phase (method I) 
We can proceed in a similar way to form the momentum balance equation of the dispersed 

phase. Following method I it will be clear tha t~s ince  all particles are entirely surrounded by 
continuous phase within the control volume element-- the only external force which now comes 
in is the body force exerted by gravitation. 

Of course the fact that there are no particles which are intersected by the boundary planes 
can not mean that there is no convective contribution to momentum transport. This seems a 
contradiction which can be solved by means of the flexible boundary planes which we suppose 
to jump around a dispersed particle moving in the direction of the control volume when it is 
close enough, or just reverse to retreat from a particle moving away from the control volume when 
it is far enough off. 

Again a contribution V. R.a to the momentum transport is found as a consequence of the 
fluctuations of the dispersed particle velocity _va: 

R.~ = m { ( 1  - ~)v~v'~. 



ON THE MOMENTUM EQUATIONS IN DISPERSED TWO-PHASE SYSTEMS 29 

Now, however, the dispersed nature of the individual particles manifests itself. In applying 
method I we supposed that there is no permanent contact between the dispersed particles (the 
porosity ~ is close to one) and only occasionally collisions may happen. In that case there can 
not be an effective transport of momentum from one particle to another and also the 
fluctuations of the dispersed particle velocity can not arise from the dispersed phase itself but 
must be induced by the fluctuations in the continuous phase velocity. The gain or loss of 
momentum of a dispersed particle which is related to the fluctuation of its velocity must come 
from and finally made up by the surrounding continuous phase. This means that for each 
particle separately the product (v)_v~) when averaged over time must disappear.t Since there also is 
no transport of one particle to another R=a must be = 0. Of course this no longer holds true at lower 
porosities when there is permanent contact or occasional collisions can no longer be neglected. 
Hence, R__a~ 0 at lower porosity. 

In both cases (Rd = 0 at high porosity and ~ 0 at lower porosity) one might argue that 
through the interaction force _Fac and especially through the part _F, of that force which is 
directly related to the slip velocity _v, between the two phases (_v, = _va - v¢) momentum of the 
dispersed phase is transferred to the continuous phase and hence one would wonder whether 
the product pa_v~_v,~ or part of it would not contribute to the momentum transport in the 
continuous phase. 

As mentioned however, this should happen by the action of the interaction force _Fs and 
hence is entirely accounted for by the fluctuation _F'; of this interaction force. Now at low 
Reynolds numbers (related to the slip velocity _v,) the point value _F'~ = _F~ + _F'] can be expected 
to depend linearly on the point slip velocity v_,-v_~+_~'- v" (where v_e-"-v_'~-c_'~). Hence on 
averaging _F'~ will disappear and hence also the contribution of the product pd_v~_v~ to the 
momentum transport in the continuous phase. At higher Reynolds numbers this of course is no 
longer true and in that case we must expect a rather strong increase of _F, which probably can be 
brought back to an increase of the specific force _F~. 

Now returning to the momentum balance of the dispersed phase there again is only one 
internal force, viz. -Fdc, which is just the opposite of the interaction force Fac calculated in 4.1. 

Therefore, in the case the porosity is close to unity (as mentioned before, only in this case 
the application of method I is allowed), the momentum balance of the dispersed phase 
becomes: 

D • V_od} = 
(1 - ~)pd ~ (_v~) = (1 - E)pd t o t  v a (1 - E(ad~ - _F~c 

= (I - E)pd_g -- (I -- d[Vp + V" ~] -- _i_i_i_Fi. [221 

4.3 The momentum balances according to method H 
Following method II there is no restriction anymore concerning the volume fraction of 

dispersed phase and so there is no need to assume that the dispersed particles do not touch 
each other. The faces of the control volume element are now cut in two parts: one part of 
fraction E which is occupied by continuous phase and a part of fraction 1 - ¢  occupied by 
dispersed phase. This means that the external forces acting on the phases have changed, except 
of course the body forces: (1) the rates in and out caused by the shear stresses and pressure on 
the continuous phase are a factor E smaller; (2) the remainder of the external forces is now 
acting on the dispersed phase. 

Also the interaction force of the dispersed phase on the continuous phase, now called F* _ d c ,  

tAs mentioned before (section 3) averaging over time gives the same result as averaging over the control surface area A,o. 
Aro. 
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has changed as will be seen in the following. Of course the fluxes by convection as well as the 
accumulation rate and the body forces are still the same as derived in applying method I. 

Comparing with method I we can make the following balances (see figure 2). 

external stresses] = 
on cont. phase J~ 

external stresses ] fs  ' f 
on cont. phase Jli + ~ .  ~ _n ' (p '~  + ~c) dS - ,~, _n "(p'8= + z'c) dS 

Se 

{23] 

external stresses ] 
on disp. phase Jl = 

[externalstresses] +~ j "  , ~ , f  = . 
__,.dish. phase Jll ~ _n • (p'8 + "r='c) dS - _n • (p'8 + r'<) dS o n  

S e Si 

[24] 

rOF_ac = ro3_F~c - ~ f_n. (p'8+ ~3 dS+ ~ f_n. (p'6+ r='~)dS. 
Si Se 

{25] 

In these equations Si is that part of the surface of the dispersed particles which is facing 
inwardly towards the control volume element, while S, is the part facing outwardly, n is the 
normal to the surface of the particles directed towards the continuous phase. It is found--as it 
should be--that: 

I 
externai s t resses]  Fexternal stresses] 
on both phases | = | on both phases | 

together ] t L together ]u  
[26] 

while also 

and 

Since 

and 

it is found that: 

external stresses ] [ external stresses] + ro3F~¢ 
on cont. phase J~ + r°3F-d¢ = - I_ on cont. phase Jli - 

F external -1 
[external stresses] _ 3,~ _ / s t r e s s e s  on 
[ on disp. phase Ji ro _rdc -- Ldisp. phase_ i , -  r°3-F]° 

external stresses] = 
on cont. phase JI - (Vp + V. ~)ro 3 

external stresses]  = 
on cont. phase Jii - (~Ep + V • eTe)ro 3 

[271 

{28] 

_Fac - Fie  = V(l - E)p + V. (1 - e)~.,. [291 
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This same result is derived in a more direct way in appendix II. In section 4.1 it was found that 

F ~  = (I - d(Vp +V. T~)+ -FI 

and so we now have 

_F~c = pV~ + T~ "Vc + Ft. [30] 

The continuous phase momentum balance now reads: 

D 
ep~ ~ (re)= -V. R~-~" eT~-~ep + epc_g + _F~ [31] 

which after substitution of [30] reads the same as [21]. 
To derive now the dispersed phase momentum balance we first apply [28] and [29]. Realizing 

that in applying method I the external stresses on the disp. phase were absent we therefore find 

external stress]  = _ ~7(1 - e)p - V .  (I - e)T~}ro s 
on disp. phaseJn 

[32] 

which equation holds as long as there is no interaction between the dispersed particles themselves. 
In applying method II we already stated that occasional or permanent  contact 

between the dispersed particles is possible and in that case the particles outside the 

control volume element might exert stresses on the dispersed particles inside this 
volume element. The stresses in the dispersed phase together form the stress tensor o,z. The total 

action of this tensor on the dispersed phase is indicated by - V.  (1 - e)~ra. 
In section 4.2 we already mentioned the tensor R.a =p~{(1-e)v~_v~} on which we 

argued that it must be zero when there is no interaction between the dispersed particles. Since in 

general this is not the case, there remains an effective R~ acting on the dispersed phase. Since, 
however, in practice R~ can not be measured and its effect'is the same as that of the stress tensor o'a, 

we define a new stre~s tensor or*: (1 - e)crd. 
i 

(I - ¢)~ = (I - e)~a + R~. 

The momentum balance for the dispersed phase now becomes: 

D 
(I - ~)pd ~ (_va) = - V. (I - c)g~- V(I -dp -V. (I - c)~ + (I - E)pdg - _F~c- 

Except for the first term in the r.h.s, this equation becomes the same as [22] 

subs t i tu t ing  (30): 
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after 

D 
(l-e)pa~(va)=-(l-e)V.T~-V.(l-e)~-(l-e)~p+(l-e)p~-F I. [34] 

5. D I S C U S S I O N  

(1) It has been shown that both methods I and II for forming the momentum balances of a 
two-phase dispersed system give the same final result which gives us confidence that this result 
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is as good as possible for a dispersed system. One of the major assumptions was the restriction 
of the control volume element: Id "~ ro'~ L. It is believed (on intuitive basis) that the size r,) is 
small enough if say 100 dispersed particles are contained in the control element. 

(2) Rotation of particles and internal circulation were so far not discussed. In fact there was 

no need since the derivation of _Fd, as given is independent whether there is circulation/rotation 
or not. Of course circulation/rotation do have influence but this influence manifests itself in the 
fluctuations of _t,, ~ and p and hence in the formation of Rc and of _F~. 

(3) The term R,. can not be eliminated by combining it with shear stress tensor ~ as done, 
e.g. by Anderson & Jackson (1%7). This must be clear from the elaboration of the interaction 

term _Fa,. in which ~. occurs but R, does not. 
(4) The tensor Re--except for--the effects of rotation/circulation--accounts for (a) the effects 

of the Reynolds stresses on the momentum transport through the continuous phase; (b) the 
possible sideward drift of the dispersed particles in a non-uniform velocity profile of the 
continuous phase; (c) the lagging behind of dispersed particles in a non-uniform velocity profile 
even if these particles have the same density as the continuous phase, which occurs due to 
averaging of shear stress and velocity over the surface of the particles (Simha 1936). 

(5) As follows from 

F~ = (1 - e)(Vp + V. ~)  + F 1 

the total interaction force is composed of several contributions. 
It will be clear that the part ( l -  e)Vp is the well-known buoyancy Archimedes force 

which also acts if the slip velocity is zero. A similar action upon the particles is caused by the 

term (1 - E)V. ~, hence remains the term: 

, f F, - AxAyAz 
A x.6. y.A z 

dispersed phase 

(Vp"+ V • ~',~dx dydz. 

Indeed it is sure that the fluctuations p" and ~ around the particles will mainly be brought about 
by the flow of the continuous phase around the particles. 

It is believed, therefore, that F~ is the so-called slip force which is directly related to and at 

low Reynolds numbers proportional to the slip velocity _v5 = _vd - vc. 
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N O T A T I O N  

a radius of dispersed particle 
d diameter of dispersed particle 

E~k stress tensor as defined by Anderson & Jackson 
_F'p~ interaction force of single particle on continuous phase 
_Fac interaction force of dispersed phase on continuous phase per unit volume on 

dispersed system 

F, see [161 
g gravity force per unit mass 
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I 

L 
n 

No, Ni, N2 

P 
ro 
r 

gc  

S 

So 
t 

V 

x , y ,  2 

y 
S = 

E 

p 

weighting function of Anderson & Jackson 
coordinate of weighting function 
scale of dispersion 
scale of equipment 
mass flux 
number of dispersed particles in control volume element (see figure 2) 
isotropic pressure 
size of control volume element 
location vector 

t~ tt 
epcVcVc 

surface element of dispersed particle 
surface area of dispersed particle 
time 
linear velocity 
volume element 
volume of dispersed particle 
space coordinates 
interfacial tension 
unit tensor 
porosity = volume fraction of continuous phase 
density 
stress tensor indispersed phase 
shear stress tensor in continuous phase 

Subscripts 
c continuous 
d dispersed phase 
i internal 
e external 
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APPENDIX I 

The averaging method of Anderson & Jackson 
If a' is any point property of the continuous phase then the local mean value a at the point _r 

MF Vol. 9. No I---C 
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is defined by: 

K RIETEMA a d d  H 1- ~, VAN DEN AKKER 

C 
~(_r)a (_r) = J a'(_rOg(_r - _r,) d %, 

~ t w  

V ~, cont.phase 

where the integration is taken only over points which are occupied by the continuous phase. 
Similarly for any point property b' of the dispersed phase: 

{1- E(r)}b(_r) = f b'(_rOg(_r-_rl)dV,, = ~  f b'(_rt)g(_r-_rO dV,, 
V~ disp.phase P Vp 

where the integration is taken only over points occupied by the dispersed phase, and the 
summation over all dispersed particles. 

In working out the local mean value of V. E~k where E~k stands for (p'~ + ~), Anderson & 
Jackson arrive at their equation [32] which says that: 

f g(r_-rl)V. Ejk dV, - V  f Eikg(_r-_rOdV,,. 
P sp V ~, disp.phase V '=, disp.phase 

Next they state that both Eik and V • ErE vary little over distances comparable with the radius of 
g and that hence they may be evaluated at _r rather than at _rt and taken outside the integrals. 

Now this can not be correct: 
(a) If V • E~k may be considered constant over the radius of g then Eik itself is not constant 

unless V. Ejk = O. 

(b) In their final result Anderson & Jackson derive that the total interaction force _Fuc 
between the two phases is exactly as our result: 

F.~ = ( 1 -  c){Vp + V .  ~:}+ _F, 

and hence contains the Archimedes force ( l -  e)Vp which the dispersed particles experience 
due to the effect of the pressure gradient over the size of these particles. If this force can not be 
neglected (with which we agree) than how can it be neglected over the radius of the function g 
which radius must be much larger than that of the dispersed particles. 

Because of the above arguments we tried an approach in which we assumed that at any 
point _r local mean properties like p can be linearized so that: 

p'(r_O = p(r) + V,p . (r_~ - r_) + p". 

In elaborating now f g(r - r0Vr,(p') d V,,, however, we met unsurmountable difficulties. 
V~cont.phase - - 

APPENDIX II 

A. Proo[ that _Fac- _F~c = V(1 - a)p + V. (1 - ~)~ 
According to [25]: 

[a] 
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in which 2 f stands for: 
N S  

f n • (p'8.+ ~ ) d S  
s 

If we put S = S~ + Se we can write: 

[b] 

From (a) and (b) 

[cl 

or: 

f = • 
S S~ 

[d] 

If we consider a particle in the interface of the cubic volume element (see figure A) then for 
such a particle 

f _n . (p'~+'r'c)dS = f _n • (p'~+ ~ ) d S -  f _n • (p '8+ ~ ) d S  
S i S' Sc 

[el 

where S' = S~ + Sc = the interface which encloses the shaded part of the particle in figure A. 
This shaded part is entirely within the cube. The volume of this part is called V~. (It is supposed that 
in writing (e) p' and ~.' are the imaginary continuation inside the particle of p' and ~ outside of the 
particle.) 

i n t c r  f ace  

e l e m e n t  

Fi :ure A. 

As both S and S' are closed surfaces the corresponding surface integrals can be transferred 
into volume integrals. Hence from (d) and (e) after summation over all particles NI + N2 it 
follows: 

If] 
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Now it can be shown (see further on under B) that 

E v; 
N I - N  2 

hence 

- N I + N  2 
VI, Up 

[g ] t  

and now from (f) and (g): 

ro3F . = E f" 
NI÷N 2 

S, 

[h] 

Evaluation of E f according to earlier indicated procedure gives 
NI+N 2 S c 

dS = ro3{V(i - E)p + ~ .  (1 - ~)r__,.} 
N 2 

S, 

[J] 

so that 

_F~c÷ = F~c - _F~c = v ( l  - ~)p + v .  ( l  - ~ )~ .  

B. Proof that N1Vp = ~ V'p (see figure 2) 
NI*N 2 

It is assumed that the porosity c is uniformly distributed and that all dispersed particles have 

the same volume Vp. 
The expectation of the number of mass centres of dispersed particles inside a cube with 

edge ro is now (I - E)ro3/Vr 
The actual number is No + N~. If the number of particles inside the cube is large enough 

we may equalize these two numbers: 

No + NI = (1 - ¢)ro3/Vp 

o r  
[k] 

(No + N,)V~, = (1 - E)ro 3 

The expectation of the total volume dispersed phase inside the cube is ( 1 - E)ro 3, while the actual 

volume dispersed phase inside the cube is 

N o V .  + ~ V;. 
Nc'-N, 

Equalizing gives 

NoVp + ~t~, V'p = (1 - ~)ro 3 [i] 

[k] and  [1] t o g e t h e r  give:  

t Ni Vp = Vp. tin] 
2 

"['This is not quite exact since in the left-hand side integration is across the interface, while in the right-hand side 
integration is only over that part of the particles which is inside the cube. However, it may be assumed that p and all 
components of ~'c change linearly with distance and then (g) is correct. 


